

ESTIMATIVA E ANÁLISE DO RENDIMENTO POTENCIAL DO FEIJOEIRO E FATORES LIMITANTES

	Modalidade: () Ensino (X) Pesquisa () Extensão	
	Nível: () Médio () Superior (X) Pós-graduação	
Área: () Química	() Informática (X) Ciências Agrárias () Educação	() Multidisciplina

Autores: Rodrigo Martins MONZANI; Ivete Maria GRISA; Luciano ALVES; Rômulo João DEBARBA **Identificação autores:** Docentes IFC – Doutorandos em Agronomia – Produção Vegetal - UFPR

Introdução

O Brasil situa-se entre os maiores produtores mundiais de feijão (*Phaseolus vulgaris* L.), figurando em segundo lugar na produção mundial na safra 2010/11 de acordo com dados da FAO, com uma produção de 3,2 milhões t, ultrapassado somente pela Índia, com 4,9 milhões t (FAO, 2012). O sul do Brasil concentra a maior parcela da produção, que soma mais de um milhão de t, representando aproximadamente 30% do total produzido no país. De acordo com dados do IBGE (2012), Santa Catarina é o 8° produtor, tendo, na safra 2010/11, uma produção de 156,7 mil t, correspondente a aproximadamente 4,4% da produção nacional.

A primeira safra representa 82% da produção total em SC. O feijão safrinha, por sua vez, é plantado em algumas regiões, principalmente com o objetivo de aproveitar os resíduos de adubo das culturas de fumo e milho do cedo, sem muita tecnologia. Por isso, a produtividade não é tão elevada como a da primeira safra (1,5 contra 1,2 t ha⁻¹, na safra 2010/11). Considerando-se as microrregiões produtoras, a maior produção vem da região de Curitibanos, com 48,8 millhões t (28,8% do total produzido), seguido de Xanxerê (22,8 mil t), Campos de Lages (22 mil t), Joaçaba e Canoinhas, empatadas com 17,5 mil t (IBGE, 2012). Em Chapecó, considerando-se dados das safras 2007/08 a 2009/10, observou-se um aumento na área plantada, passando de 9274 ha na safra 2007/08 para 11644 ha em 2009/10, e também na produção, passando de 10,3 milhões t na safra 2007/08 para 15,8 na safra 2009/10, com uma produtividade média nesta safra de 1,4 t ha -1.

O crescimento e desenvolvimento das culturas são modulados por vários fatores, a exemplo da radiação incidente, disponibilidade de água e temperatura (Sinclair, 1994). A influência dos fatores que limitam o rendimento das culturas pode ser melhor compreendido quando são determinados os valores de rendimento potencial. A diferença entre o potencial de rendimento e o rendimento obtido nos serve de parâmetro para o dimensionamento das perdas por estresse a que as culturas são submetidas (Evans, 1983).

O feijoeiro tem enfrentado problemas na maioria das regiões produtoras, devido à baixa produtividade que, provavelmente, tem suas causas assentadas na tecnologia rudimentar utilizada, variações climáticas e, principalmente, no esgotamento progressivo da fertilidade do solo. A escassez de trabalhos relacionados ao potencial de produção dificultam a proposição de práticas de manejo e modificações em parâmetros relacionados à produtividade, como arquitetura da planta e índice de área foliar, buscando a melhoria dos níveis de produção.

O objetivo deste trabalho é avaliar a viabilidade dos modelos propostos por Loomis e Wiliams (1963), Sinclar (1993) e Doorenbos e Kassan (1994) para a estimativa do rendimento potencial do feijoeiro, cultivado entre outubro de 2012 e janeiro de 2013, em Chapecó, SC.

Material e Métodos

Os cálculos de rendimento potencial foram realizados a partir de modelos propostos por Loomis e Williams (1963), Sinclar (1993) e Doorenbos e Kassan (1994), sendo os valores estimados comparados com dados obtidos pela Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina - EPAGRI. Para a determinação dos valores de rendimento potencial para o feijoeiro foram utilizados dados referentes ao município de Chapecó, oeste de SC, numa altitude de 670 m, com coordenadas geográficas de 27° 05' 45" S e 52° 37' 04" W, clima classificado como *Cfa* de Köppen (clima subtropical úmido), caracterizado por verões quentes, abafados e com trovoadas frequentes.

A cultivar utilizada foi a 'BRS7762 Supremo', indicada para o cultivo na safra das águas e da seca em SC, tendo ciclo de produção de 85 a 95 dias, hábito de crescimento indeterminado, porte ereto e massa de 100 grãos de 23 g (CTSBF, 2012). O plantio foi efetuado de acordo com o Zoneamento Agroclimático para a Cultura do Feijão para o Estado de Santa Catarina, sendo indicado para a semeadura o período compreendido entre 11 de agosto a 20 de outubro e 01 de fevereiro a 10 de março (EPAGRI/CIRAM, 2013). Os dados climatológicos para a região de Chapecó foram obtidos do Centro de Informações de Recursos Ambientais e de Hidrometeorologia de Santa Catarina - CIRAM.

Resultados e Discussão

As estimativas de rendimento utilizando os diferentes métodos propostos foram bastante variadas, atribuído às diferentes variáveis utilizadas pelos diferentes métodos para a estimativa do rendimento potencial (Tabelas 01, 02 e 03). O método proposto por Loomis e

Williams (1963) que utiliza apenas a radiação solar incidente como parâmetro de entrada, foi o método que implicou nos maiores valores de produção de grãos (17,4 t ha ⁻¹).

Tabela 01. Cálculo do rendimento potencial do feijoeiro pelo método Loomis e Williams (1963).

Componentes do Cálculo	Valor de Entrada	Valor Calculado
Radiação solar incidente média	462,92 cal cm ² dia ⁻¹	
Caloria da radiação solar visível	8,640 μEinstens cal ⁻¹	
Energia bruta para fotossíntese		3999,629 μEinstens cal ⁻¹
Perda por albedo (Planta+Solo)	959,91 μEinstens cal ⁻¹	
Perda por absorção inativa (10%)	399,96 μEinstens cal ⁻¹	
Energia líquida para fotossíntese	·	2639,755 μEinstens cal ⁻¹
Necessidade de quantum	10 Quanta molécula de CO ₂ reduzida - 1	•
Produção bruta de CH ₂ O		263,976 μmoles cm ² dia ⁻¹
Consumo da respiração	40%	·
Produção líquida de CH ₂ O	g mol ⁻¹	158,3853 g m ² dia ⁻¹
Matéria seca total (MST)		45.140 kg ha ⁻¹
Ciclo da cultura	95 dias	_
Matéria seca total		$45.140 \text{ kg ha}^{-1}$
MST referente à parte aérea	70%	
Índice de colheita	45%	
Nutrientes inorgânicos	8%	
Umidade	13%	
Rendimento de grãos		17.353 kg ha ⁻¹

Tabela 02. Cálculo do rendimento potencial do feijoeiro pelo método Sinclair (1993).

Componentes do Cálculo	Valor de Entrada	Valor Calculado
Radiação solar incidente média	462,92	19,3755 MJ.m ² .dia ⁻¹
Eficiência de uso da radiação (RUE)	2,39 g.MJ ⁻¹	
Coeficiente de extinção (K)	0,45	
Índice de área folhar no florescimento (IAF)	5	
Fração da radiação solar interceptada (FRSI)		0,8946
Radiação interceptada (RI)		17,3334 MJ.m ² .dia ⁻¹
Taxa de crescimento da cultura (TCC)		41,4267 g.m ² .dia ⁻¹
Ciclo da cultura	95 dias	
Massa seca total acumulada pela planta (MST)		$3935,54 \text{ g.m}^2$
Fração da MST referente a parte aérea	70%	_
Massa seca da parte aérea (MSPA)		$2754,88 \text{ g.m}^2$
Índice de colheita	45%	
Umidade	13%	
Rendimento de grãos	14.009,00 kg.ha ⁻¹	

Tabela 03. Cálculo do rendimento potencial do feijoeiro pelo método de Doorenbos e Kassam (1994).

Componentes do Cálculo	Valor Calculado	
Produção Potencial Bruta com nuvens (PPBn)	112,25 kg ha ⁻¹ dia ⁻¹	
Produção Potencial Bruta sem nuvens (PPBc)	212,54 kg ha ⁻¹ dia ⁻¹	
Produção Potencial Bruta de matéria seca (PPBp)	324,79 kg ha ⁻¹ dia ⁻¹	
Radiação solar incidente média (Q0)	992,42 cal cm ² dia ⁻¹	
Correção para temperatura de dias nublados (cTn)	0,939	
Correção para temperatura de dias claros (cTc)	0,880	
Correção para IAF (CIAF)	0,5	
Correção para respiração (Cr)	0,5	
Correção para parte colhida (Cc)	0,3	
Rendimento de grãos	2.314,13 kg ha ⁻¹	
Rendimento de grãos (8%)	2.571,27 kg ha ⁻¹	

De acordo com Costa (2011), este método preconiza a linearidade entre a interceptação da radiação e a produtividade de matéria seca, desconsiderando aspectos importantes relacionados à planta, como características relacionadas à arquitetura das folhas, índice de área foliar (IAF), coeficiente de extinção luminosa (CK) e temperatura. Este modelo considera também que a fotossíntese, a respiração e a absorção do fluxo de fótons fotossintéticos ocorrem com a máxima eficiência em todas as folhas da comunidade, e que esta eficiência máxima é mantida durante todo o ciclo da cultura; admitindo também que a interceptação máxima da radiação ocorre desde a emergência da cultura, fato este que não correspondente a realidade. Além disto, o modelo faz desconsiderações com relação a uma série de variações existentes entre as plantas de uma mesma população, além das variações ambientais ocorridas durante o ciclo da cultura.

O método proposto por Sinclair (1993) estimou uma produtividade de 14 t ha⁻¹, valor 20% inferior ao obtido pelo método de Loomis e Williams (1963), em decorrência da utilização de outras variáveis, como o índice de área foliar (IAF) e o coeficiente de extinção (CK). Já o método proposto por Doorenbos e Kassam (1994) estimou um rendimento de 2,6 t ha ⁻¹, resultado este bastante próximo ao obtido pela cultura em condições normais de cultivo na região de Chapecó (1,4 t ha ⁻¹). Este método tem uma maior acurácia para a determinação da estimativa de rendimento potencial devido ao fato de levar em consideração uma série de aspectos fisiológicos (índice de área foliar, perda por respiração) e ambientais (radiação solar incidente, temperatura, fotoperíodo e número de horas de brilho solar).

O crescimento e desenvolvimento de culturas agrícolas são limitados por fatores como restrição da atividade biológica a uma estreita faixa de temperatura, disponibilidade de energia solar para promover a fixação de CO₂ e a imposição de estresses abióticos, especialmente o suprimento inadequado de água (Sinclair, 1994). De acordo com Pires (2000), para a maximização do potencial de rendimento, deve-se, desde o início do ciclo da cultura, estabelecer uma população adequada de plantas, visando proporcionar o desenvolvimento de caule, ramos, raízes e área foliar para a produção de um maior número de estruturas reprodutivas. Além disso, para um rendimento elevado, esse potencial deve-se manter estável até o estádio de maturação.

Conclusão

O rendimento potencial do feijoeiro pode ser obtido através da utilização de modelos matemáticos, tais como Loomis Williams (1963), Sinclair (1993) e Doorenbos e Kassam (1994). Observaram-se diferenças discrepantes entre os modelos utilizados, sendo o de Doorenbos e Kassam (1994) o que apresentou os melhores ajustes nas condições de campo. Já no de Sinclair

(1993) os resultados são passíveis de obtenção através da utilização de cultivares apropriadas e práticas de manejo favoráveis. Os resultados obtidos através do modelo de Loomis Williams (1963) são considerados superestimados em função de não expressar de forma fidedigna as condições abióticas e fisiológicas dos fenômenos envolvidos no processo produtivo. Trabalhos recentes de pesquisa mostram que cultivares modernas de feijão, submetidas a práticas de manejo adequadas, apresentam potencial de rendimentos próximos aos valores do rendimento potencial, obtidos através do método de Doorenbos e Kassam (1994).

Referências

COMISSÃO TÉCNICA SUL-BRASILEIRA DE FEIJÃO. Informações técnicas para o cultivo de feijão na Região Sul brasileira. 2.ed. Florianópolis: Epagri, 2012. 157 p.

COSTA, N. L. Estimativa do rendimento potencial de azevém anual (*Lolium multiflorum* Lam.) através de modelos matemáticos. **PUBVET**, Londrina, v. 5, n. 9, ed. 156, Art. 1051, 2011

DOORENBOS, J.; KASSAM, A. H. **Efeito da água no rendimento das culturas.** Campina Grande: UFPB, 1994. 306p. (Estudos FAO: Irrigação e Drenagem, 33).

EPAGRI/CIRAM. **Zoneamento Agrícola para a Cultura do Feijão**. Disponível em: <www.epagri.sc.gov.br>. Acesso em: 19 out. 2013.

EVANS, J. R. Nitrogen and photosynthesis in the flag leaf of wheat (*Triticum aestivum* L.). **Plant Physiology**, Rockville, v.72, n.2, p.297-302, 1983.

FAO. Statistics Division 2012. Disponível em: <www.faostat.fao.org>. Acesso em: 25 out. 2013.

IBGE. **Levantamento Sistemático da Produção Agrícola**. Disponível em: <www.ibge.org.br>. Acesso em: 25 out. 2012.

LOOMIS, R. S.; WILLIAMS, W. A. Maximum crop productivity: an estimate. **Crop Science**, v.3, n.1, p.67-72, 1963.

PIRES, J. L. F. et al. Efeito de populações e espaçamentos sobre o potencial de rendimento da soja durante a ontogenia. **Pesquisa Agropecuária Brasileira**, Brasília, v.35, n.8, p.1541-1547, 2000.

SINCLAIR, T. R. Crop yield potential and fairy tales. In: BUXTON, D. R. *et al.* (Ed). **International Crop Science I**. Crop Science Society of America, 1993. p.707-711.

SINCLAIR, T. R. Limits to crop yield? In: BOOTE, K. J. (Ed.). **Physiology and determination of crop yield**. Madison: American Society of Agronomy/Crop Science Society of America/Soil Science Society of America, 1994. p.509-532.